
EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Introduction to 
Parallel Performance Engineering 

Allen D. Malony 
University of Oregon 

 
(with content used with permission from tutorials 

by Bernd Mohr/JSC and Luiz DeRose/Cray) 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Virtual Institute – High Productivity Supercomputing 

Goal: Improve the quality and accelerate the development 
process of complex simulation codes running on highly-parallel 
computer systems 

•  Start-up funding (2006–2011)  by 
Helmholtz Association of 
German Research Centres 

•  Activities 
–  Development and integration of HPC programming tools 

•  Correctness checking & performance analysis 
–  Training workshops 
–  Service 

•  Support email lists 
•  Application engagement 

–  Academic workshops 

http://www.vi-hps.org 
2 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Today: the “free lunch” is over 

■  Moore's law is still in charge, but 
■  Clock rates no longer increase 
■  Performance gains only through 

increased parallelism 

■  Optimizations of applications more 
difficult 

■  Increasing application complexity 
■  Multi-physics 
■  Multi-scale 

■  Increasing machine complexity 
■  Hierarchical networks / memory 
■  More CPUs / multi-core 

✦ Every doubling of scale reveals a new bottleneck! 

3 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Performance factors of parallel applications 

■  “Sequential” factors 
■  Computation 

✦ Choose right algorithm, use optimizing compiler 
■  Cache and memory 

✦ Tough! Only limited tool support, hope compiler gets it right 
■  Input / output 

✦ Often not given enough attention 
 

■  “Parallel” factors 
■  Partitioning / decomposition 
■  Communication (i.e., message passing) 
■  Multithreading 
■  Synchronization / locking 

✦ More or less understood, good tool support 

4 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Tuning basics 

■  Successful engineering is a combination of 
■  The right algorithms and libraries 
■  Compiler flags and directives 
■  Thinking !!! 

■  Measurement is better than guessing 
■  To determine performance bottlenecks 
■  To compare alternatives 
■  To validate tuning decisions and optimizations 

✦ After each step! 

5 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Performance engineering workflow 

6 

■  Prepare application (with symbols), 
insert extra code (probes/hooks) 

■  Collection of data relevant to 
execution performance analysis 

■  Calculation of metrics, identification 
of performance metrics 

■  Presentation of results in an intuitive/
understandable form 

■  Modifications intended to eliminate/reduce 
performance problems 

Preparation 

Measurement 

Analysis 

Examination 

Optimization 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

The 80/20 rule 

■  Programs typically spend 80% of their time in 20% of 
the code 

■  Programmers typically spend 20% of their effort to get 
80% of the total speedup possible for the application 

✦ Know when to stop! 

 
■  Don't optimize what does not matter 

✦ Make the common case fast! 

7 

“If you optimize everything, 
you will always be unhappy.” 

 

Donald E. Knuth 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Classification of measurement techniques 

■  How are performance measurements triggered? 
■  Sampling 
■  Code instrumentation 

 
■  How is performance data recorded? 

■  Profiling / Runtime summarization 
■  Tracing 

■  How is performance data analyzed? 
■  Online 
■  Post mortem 

8 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Sampling 

9 

■  Running program is periodically interrupted 
to take measurement 

■  Timer interrupt, OS signal, or HWC overflow 
■  Service routine examines return-address stack 
■  Addresses are mapped to routines using 

symbol table information 

■  Statistical inference of program behavior 
■  Not very detailed information on highly 

volatile metrics 
■  Requires long-running applications 

■  Works with unmodified executables 

Time 

main! foo(0) ! foo(1) ! foo(2) !

int main() 
{ 
  int i; 
 
  for (i=0; i < 3; i++) 
    foo(i); 
 
  return 0; 
} 
 
void foo(int i) 
{ 
 
  if (i > 0) 
    foo(i – 1); 
 
} 

Measurement !

t9 t7 t6 t5 t4 t1 t2 t3 t8 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Instrumentation 

10 

Time 

Measurement !

■  Measurement code is inserted such that 
every event of interest is captured directly 

■  Can be done in various ways 

■  Advantage: 
■  Much more detailed information 

■  Disadvantage: 
■  Processing of source-code / executable 

necessary 

■  Large relative overheads for small functions 

int main() 
{ 
  int i; 
 
  for (i=0; i < 3; i++) 
    foo(i); 
 
  return 0; 
} 
 
void foo(int i) 
{ 
 
  if (i > 0) 
    foo(i – 1); 
 
} 

Time 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 

main! foo(0) ! foo(1) ! foo(2) !

Enter(“main”); 

Leave(“main”); 

Enter(“foo”); 

Leave(“foo”); 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Instrumentation techniques 

■  Static instrumentation 
■  Program is instrumented prior to execution 

■  Dynamic instrumentation 
■  Program is instrumented at runtime 

 

■  Code is inserted 
■  Manually 
■  Automatically 

■  By a preprocessor / source-to-source translation tool 
■  By a compiler 
■  By linking against a pre-instrumented library / runtime system 
■  By binary-rewrite / dynamic instrumentation tool 

11 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Critical issues 

■  Accuracy 
■  Intrusion overhead 

■  Measurement itself needs time and thus lowers performance 
■  Perturbation 

■  Measurement alters program behaviour 
■  Examples: memory access pattern, counters, synchronization 

■  Accuracy of timers & counters 
■  Granularity 

■  How many measurements? 
■  How much information / processing during each measurement? 
 

✦ Tradeoff: Accuracy vs. Expressiveness of data 

12 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Profiling / Runtime summarization 

■  Recording of aggregated information 
■  Total, maximum, minimum, … 

■  For measurements 
■  Time 
■  Counts 

■  Function calls 
■  Bytes transferred 
■  Hardware counters 

■  Over program and system entities 
■  Functions, call sites, basic blocks, loops, … 
■  Processes, threads 
 

✦ Profile = summarization of events over execution interval 

13 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Tracing 

■  Recording information about significant points (events) 
during execution of the program 

■  Enter / leave of a region (function, loop, …) 
■  Send / receive a message, … 

■  Save information in event record 
■  Timestamp, location, event type 
■  Plus event-specific information (e.g., communicator, 

sender / receiver, …) 

■  Abstract execution model on level of defined events 
 

✦ Event trace = Chronologically ordered sequence of 
   event records 

14 



Event tracing 

void foo() { 
   
  ... 
   
  send(B, tag, buf); 
  ... 
   
} 

Process A 

void bar()  { 
   
  ... 
  recv(A, tag, buf); 
   
  ... 
   
} 

Process B 

MONITOR 

MONITOR 

sy
nc

hr
on

iz
e(

d)
 

void bar() { 
  trc_enter("bar"); 
  ... 
  recv(A, tag, buf); 
  trc_recv(A); 
  ... 
  trc_exit("bar"); 
} 

void foo() { 
  trc_enter("foo"); 
  ... 
  trc_send(B); 
  send(B, tag, buf); 
  ... 
  trc_exit("foo"); 
} 

instrument 

Global trace view  

58 A ENTER 1 

60 B ENTER 2 

62 A SEND B 

64 A EXIT 1 

68 B RECV A 

... 

69 B EXIT 2 

... 

merge 

unify 

1 foo 

2 bar 

... 

58 ENTER 1 

62 SEND B 

64 EXIT 1 

... 

... 

Local trace A 

Local trace B 

foo 1 

... 

bar 1 

... 

60 ENTER 1 

68 RECV A 

69 EXIT 1 

... 

... 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Tracing vs. Profiling 

■  Tracing advantages 
■  Event traces preserve the temporal and spatial relationships 

among individual events (✦ context) 
■  Allows reconstruction of dynamic application behaviour on any 

required level of abstraction 
■  Most general measurement technique 

■  Profile data can be reconstructed from event traces 

■  Disadvantages 
■  Traces can very quickly become extremely large 
■  Writing events to file at runtime causes perturbation 
■  Writing tracing software is complicated 

■  Event buffering, clock synchronization, ... 

16 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Online analysis 

■  Performance data is processed during measurement run 
■  Process-local profile aggregation 

■  More sophisticated inter-process analysis using 

■  “Piggyback” messages 

■  Hierarchical network of analysis agents 

■  Inter-process analysis often involves application steering 
to interrupt and re-configure the measurement 

17 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Post-mortem analysis 

■  Performance data is stored at end of measurement run 

■  Data analysis is performed afterwards 
■  Automatic search for bottlenecks 

■  Visual trace analysis 

■  Calculation of statistics 

18 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

No single solution is sufficient! 

19 

✦ A combination of different methods, tools and techniques is 
typically needed! 

■  Analysis 
■  Statistics, visualization, automatic analysis, data mining, ... 

■  Measurement 
■  Sampling / instrumentation, profiling / tracing, ... 

■  Instrumentation 
■  Source code / binary, manual / automatic, ... 



EuroMPI/ASIA 2014 Tutorial 2: Practical Hybrid Parallel Application Performance Engineering 

Typical performance analysis procedure 

■  Do I have a performance problem at all? 
■  Time / speedup / scalability measurements 

■  What is the key bottleneck (computation / communication)? 
■  MPI / OpenMP / flat profiling 

■  Where is the key bottleneck? 
■  Call-path profiling, detailed basic block profiling 

■  Why is it there? 
■  Hardware counter analysis, trace selected parts to keep trace size 

manageable 

■  Does the code have scalability problems? 
■  Load imbalance analysis, compare profiles at various sizes 

function-by-function 

20 


